

Inverting a Rolling Shutter Camera: Bring Rolling Shutter Images to **High Framerate Global Shutter Video**

School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China

Objective

Inverting the rolling shutter (RS) imaging mechanism, *i.e.*, **RS temporal** super-resolution (RSSR), is extremely challenging, *e.g.*, recovering 1440 global shutter (GS) image sequences two 720-height rolling shutter from images, which is far from being solved in the deep learning framework.

Contribution

1. Detailed proof of the scanline-dependent nature of the bidirectional RS undistortion flows: the intrinsic geometrical nature of rolling shutter correction problem.

2. The first geometry-aware learning-based RSSR solution: extracting latent global shutter video sequence from two consecutive rolling shutter images, which brings rolling shutter images alive.

3. Superior RSSR performance: outperforming state-of-the-art methods in both rolling shutter effect removal and inference efficiency, and produceing a smooth and continuous global shutter video.

$$\begin{bmatrix} \mathbf{u}_{u}^{i,j} \\ \mathbf{u}_{v}^{i,j} \end{bmatrix} = c \begin{bmatrix} \mathbf{f}_{u}^{i,j} \\ \mathbf{f}_{v}^{i,j} \end{bmatrix}, \ c \in \begin{cases} (0,1) & \text{if } i < \frac{h}{2} \\ 0 & \text{if } i = \frac{h}{2} \\ (-1,0) & \text{if } i > \frac{h}{2} \end{cases}$$

Note: We prove for the first time that there is a constrained linear relationship between RS undistortion flow and optical flow under the constant velocity assumption.

Bin Fan, Yuchao Dai^{*}

- I. Bidirectional optical flow estimator.
- 2. Middle-scanline RS undistortion flow estimator.
- 3. Extend to RS undistortion flows under arbitrary scanlines.
- 4. Use the forward warping to generate high framerate GS video.

Only the middle-scanline global shutter images are needed for supervision.

Interconversion

Performance on Carla-RS and Fastec-RS datasets

Method	PSNR↑			SSIM↑	
	CRM	CR	FR	CR	F
DeepUnrollNet [20]	<u>26.90</u>	26.46	26.52	0.81	0.1
DiffHomo [42]	19.60	18.94	18.68	0.61	0.0
DiffSfM-PWCNet [41]	19.53	18.62	18.59	0.69	0.0
DiffSfM-RAFT [41]	24.20	21.28	20.14	0.78	0.′
RSSR (Ours)	30.17	<u>24.78</u>	<u>21.26</u>	0.87	<u>0.</u> ′

Note: Our method can produce a smooth video sequence far beyond the reach of [20]. **Qualitative results**

Results

Inputs (Overlay) DeepUnrollNet

DiffHomo

DiffSfM

Generating high framerate global shutter video

 $\rightarrow 0.6h$

Inputs (Overlay)

Inference time

Method	Times	Outputs
DeepUnrollNet (SOTA)	0.34 s	1 GS image
Two-stage method	5 min	960 GS imag
	0.12 s	2 GS image
KSSK (Ours)	1.8 s	960 GS imag

https://github.com/GitCVfb/RSSR

Record Contraction Contractico Contractico Contractico Contractico Contractico Contractico

RSSR (Ours)

Ground truth

